)
}-——-

e

[ S

4D wwt STas

‘:COp.‘iT

85

AT T 26

RESEARCH MEMORANDUM

ESTIMATION OF THE FORCES AND MOMENTS ACTING

ON INCLINED BODIES OF REVOLUTION

OF HIGH FINENESS RATIO NP

By H. Julian Allen | SRV

Ames Aeronautical Laboratory
I‘FM N{ Motfett Field, Calif.

r-!'\l"

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

WASHINGTON
November 14, 1949

BM _AQT28

i

WNN ‘g4v¥) AHVHEIT HOAL
A Wi wmmay W

L

50-9573"



TECH LIBRARY KAFB, NM -

T

NACA RM A9I26 0L42957

NATTIONAL ADVISCRY COMMITTEE FCOR AERONAUTICS P

RESEARCH 'MEMORANIUM

ESTIMATION OF THE FCRCES AND MOMENTS ACTING
ON INCLINED BODIES OF REVOLUTION
OF HIGH FINENESS RATIO

By H. Julian Allen

SUMMARY -

This report contains a discussion of the aerodynamic forces and .
moments on inclined bodies of revolution. It is known that a simple ;
potential flow solution for such bodies does not give results in good
agreement with experiment. An approximate theory to allow for the effects
of viscosity for such bodies is developed and applied. It is shown that
a simple allowance for viscous effects yields results in reasonsble agree—
ment with experiment for bodies of high fineness ratio such as would be
used on missiles and supersonic aircraft. The methods developed are
applicable at both subsonic and supersonic speeds. Some discussion of
the probable effects of Reynolds number and Mach number on the forces and _
moments on inclined bodies of revolution is included.

INTRODUCTION

Knowledge of the forces and moments on bodies of revolution has long
been of interest in aeronautical engineering. The original interest per—
teined to the characteristics of airship hulls, and one of the first logi-— -
cal attempts at understanding the nature of the flow field of these rela—
tively long closed bodies was made by Max Munk (reference 1). Munk demon—
strated that on such closed bodies at & constant angle of pitch in straight
flight and in a nonviscous fluid there occurred elemental forces along the
hull resulting from changes in the downward momentum of the fluid. Over
the forward portions of the hull shown in figure 1 the downward momentum
of the fluid must increase proceeding downstream because the apparent mass
of the component flow normsl to the axis of revolution increases due to the
enlarging cross sections of the hull. Over this portion of the hull the
reaction is upwardly directed for positive angles of attack. For bodies
with parallel midsection, representative of the older sirships, no cross
force exists over these eleménts of the hull since there occurs no change
in momentum of the fluid as the air progresses along these sections of
constant area. At the stern the contracting cross sections require a
removal of momentum from the air stream and hence downwardly directed
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elemental forces exist along the hull for positive hull angles of attack.
It is shown 1n Munk's work that for bodles of high fineness ratio the
potential cross force per unit length fp at any station along the hull
ie given by

fp = (k2 —k;) q % sin 2a | (1)

where S 1s the cross—sectional area of the hull, x ig the distance along
the hull from the bow, a 1is the angle of attack,! and k; and k, are,
respectively, the transverse and longitudinal apparent mass coefficients
for the body. The variation of ko — k; as a function of fineness ratio
is given in figure 2, This cross force at small angles of-attack can be
shown from the work of G. N. Ward, reference 2, to be directed ‘midway
between the normal to the axis of revolution of the hull and the normal to
the direction of motion of the hull (i.e., at an angle m/2).

It is evident that for a closed body, such as an airship hull, at
'a positive angle of attack the upwardly directed forces over the forward
portion must be equal to the downwardly directed forces over the rear so
that a piltching moment but no 1ift or drag results. In figures 3 and 4
are shown & comparison of calculsted and experimentally determined 11ft
and pitching moments as & function of angle of attack for the hulls of
the American sirship ZR-4 (U.S.S. Akron) (from reference 3) and the
British alrship R—32 (from reference 4). It is seen that, contrary to
the prediction of theory, s significant 1lift force exists at angle of
attack. The pitching moment is reasonebly well given by the theory,
although the actual magnitude of the pitching moment is less, in genersal,
than the predicted.

Upson and Klikoff (reference 5) have compared the celculated and .
observed cross forces for several hull ghapes, one of which is shown in
figure 5. The discrepancy at the bow has been shown by Upson and Klikoff
to be dus to the bluffness of_the body. A discrepancy also exists between
calculated and experimental characteristics over the remainder of the
hull, the actual cross force over the rearward surfaces always belng more
positive for positive pitch than the potential theory predicts. It has
long been recognized that this discrepancy results from the influence of
vigscosity of the fluid.

In recent years the determination of the cross forces on bodies of
revolution has again become of first importance to the designers of super—
sonic aircraft and missiles. These bodies in general differ from the usual
girship hulls in two important aspects: First, the bodies are of higher
fineness ratio, and, second, the bodies have a blunt stern or "base."

lThroughou‘b this report cross—force characteristics are considered in
terms of the angle of pitch. It is clear that for a body of revolu—
tion the srguments presented apply equally well to angles of yaw or
any comblnations of pitch and yaw.
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It has been pointed out by Tsien (reference 6) that the older airship
theories for the potential cross force are still applicable to such .
bodies even in supersonic flow for slender bodies at small angles of

attack. For such unclosed bhodies the airship theory would predict, in
addition to a pitching moment, a 1ift and drag, but it is again to be
expected that the failure to consider effects of viscosity will lead to
important discrepancies between these calculated characteristics and experi-
mental ones. -

It is the purpose of this paper to present an approximate anslysis of
the effects of viscosity on bodies of high fineness ratio.

STMBOLS
a speed of sound, feet per second
A characteristic reference area of body for force and moment coeffi--

cient definition, square feet
Ap plan—form ares, square feet

c gection drag coefficient of a circular cylinder per unit length
¢ in terms of its diameter —

C1, body 1ift coefficient

CuM body moment coefficlent about an arbitrary axis at distance
xm from the bhow

Cp body drag coefficient
Cpg=p body drag coefficient at zero angle of attack

ACD increase in body drag coefficient sbove that at zero angle of
attack

D body drag, pounds

Dg=p0 Dbody drag at zero angle of attack, pounds

f cross force per unit length along the body, pounds per foot
fp potential cross force per unit length along the body, pounds per
foot

v viscous cross force per unlt length along the body, pounds per
foot .
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viscous cross force per unit length along the body of infinite
length, pounds per foot

longitudinal epparent mess cosfficient
transverse apparent mass coeffiqieﬁt _

actual body 1enéth, feet

equivalent length of a blunt based body,'feet
1ift, pounds

moment about an arbitrary exis at distance xp from the bow,
foot—pounds

free—stream Mach number

cross Mach number (i.e., component Mach number of the flow normal
to the axis of revolution of the body)

free—stream dynamic pressure, pounds per square foot
radius of the body at any station x from the how, feet
maximum body radius, feet

free—stream Reynolds number

cross Reynolds number (i.e., Reynolds number based on the cross
velocity)

crosg—sectional area of the body at any station x from the bow,
square feet

cross—sectional area of the base of the body, square feet

free—stream velocity, feet per second

cross velocity (i.e., component of the flow velocity normal to the

axis of revolution), feet per second -
total volume of the body, cubic feet

longitudinael distance from the bow, feet

distance of the centroid of the plan—form area from the bow, feet
station of the axls of moments, feet -

P ad

reference length used in definition of moment coeffic1ent feet-

S
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Vi tgs
3,09, Ui

a angle of attack, degrees or radians as indicated
1 ratio of the drag coefficient of a circular cylinder of finite
length to that for a cylinder of infinite length
v free—stream kinematic viscosity, feet s@uared per second.
o] mass density, slugs per cubic foot
THECRY

In reference 7, R. T. Jones, following earlier work of L. Prandtl in
reference 8, considered the effects of viscosity on the flow over infin-—
itely long yawed cylinders and demonstrated that in the case of a laminsr
flow the viscous effects may be considered by treating the flow across
the cylinder axis independently of the flow along the cylinder. For cir—
culer cylinders of infinite length the viscous force along the cylinder
is simply that due to surface shear. The component flow across the cylin—
der, however, introduces large cross forces due to separation of the flow.
Jones has shown that the cross force on a yawed cylinder is accurately
determined by considering the cross component of drag as may be seen in
figure 6 taken from reference T. Although the demonstration of reference
T applies to laminar flows, it will be assumed to be applicable to turbu—
lent flows as well.

Consider, now, & body of revolution of high fineness ratio. It is
again to be expected that the cross—Force characteristics could be approxi—
mately predicted by treating each circular cross section as an element of
an infinitely léng circular cylinder of the same cross—sectional ares.

With this assumption the local cross force per unit length due to viscosity
fvw would be gilven by

2
PV,

fv, = 2reg (2)

b (]

where r is the body radius at any station x from the bow, Vg 1is the
cross velocity, p is the mass density, and cd, is the drag coefficient
of a circular cylinder at the Reynolds number

_ ErVC
v

(3)

c

and the Mach niumber
v .
My = 2 (%)

a

where, in addition, v is the kinemstic viscosity, end a is the speed




of sound in the undisturbved stream.

Since the cross velocity

Ve = Vo sina (5)

it follows that the viscous cross force becomes
f

where q is the dynamic pressure. The cross drag coefficient Cde is
that of & circular cylinder at the cross Reynolds number

2rv,
c=

and the cross Mach number

Mg = Mp 8in (8)

where M, 1is the Mach number of. the free stream.

It is known (see appendix) that the drag coefficient of a circular
cylinder of finite length is less than that for & cylinder of infinite

length. A similar characteristic is to be expected as regards the viscous

cross force for a body of finite length in oblique flow so that the vis—
cous cross force will be less than that given by equation (6). It is
almost certain that the largest portion of the drag reduction due to
finite length occurs at the ends of the cylinder. It will be assumed,
however, that the reduction in drag for fineness ratio is the same for
each element of a body of finite length so that in that case the viscous
crosg force becomes.

fy = 2nreg, g sin® o (9)

where 1 is the ratio of cross drag coefficient for the body of finite
fineness ratio to that for a body of infinite fineness ratio.

The integrated viscous cross force is then

1
2 2 '
nq sin \/P reg, dx
o
where 1 1s the body length.

In determination of the 1ift and drag characteristics at angle of
attack, it should be noted that there also exists a viscous axial force

NACA RM AQI26

v, = 2reg, @ sin® a (6)

sina = Ry sin a (M
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which 1s approximstely the total drag at zero angle reduced by the reduc—
tion in axiael dynamic pressure. The viscous axial force is then

c A cog® a 10
Dm=0 q ( )

where CDc.=O is the drag coefficient at zero angle and A is the ares
upon which this coefficient is based.

It i1s now assumed that the potential solution of Munk and the viscous
solution may be combined to determine the cross—force distribution slong
the body and the integrated forces and moment on the body. The potential
cross force per unit length acts at an angle cx,/2 from the normal to the
free—stream direction, while the viscous force acts normal to the axis of
revolution of the body so that the distribution of cross force in terms
of the dymamic pressure is given, from equations (1) and (9), by

g hig big
—_— = _E cog E + _I
e g 2 q
or
L= (kok;) & sin 20 cos & + onres;  sin® o (11)
q dx 2 de

The 1ift coefficient in terms of the reference area A is given by

_ L
Cr = Ty
where T 1is the total 1ift. Consideration of the potential cross force,
the viscous cross force, and the viscous axial force then ylelds

(ko—k;) sin 20 cos % st 2n sin® @ cos l '
CL = f = dx + / reg dx —
A dx A c
) o
CDa=0 cos® a sin a (12)

The drag coefficient is obtained from the cross and axial forces as

where D is the total drag, or -

CORTEERIAL
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(ko—k;) sin 2a sin & nlds 2n gin® a pl - ;
2 i 3
Cp = - = : : Q/‘ — dx + ————————-&/ﬂ rcg dx + Cp cos” o o
A dx A c a=0 ;
o] o _

(13) ~

The moment coefficient about a given station x, 1is dependent solely
upon the cross—force distribution and 1s given by .

- M -
Cop = -4 . =
M= A%
(ko—k;) sin 20 cos & A1 2y sin? a Pl ' ‘
Cy = 2 & —x) dx + ————————-JF re —x) dx N
! = | & G T e (e & -

(14)

where X 1s a characteristic length for the evaluation of moment coeffi-
cient.

The method of the present report is clearly too approximete to Justify
the implied accuracy of the preceding equations. It is considered that, -
in general, the following simplifications are warranted:

1. Cosines of angles should be replaced by unity and sines of angles
by the angles.

2. The factor kp~k; should be replaced by unity.

3. The viscous axial force (third) term of equation (12) may be _
neglected, while the corresponding term in equation (13) may be replaced . .

by cDa:O'
Moreover fhe potential term integrals may be evaluated as - -

as = T
= &= 5 | L =

and

L das
Jf & (zp—x) dx = vol — Sy (1—=Xm)
5 & -

where Sy 1is the area of the body base and vol 1s the body volume.

«The viscous cross-force term integrals may also be evaluated as
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and
L 1
L/.l r(xpx)dx = E-Ap(xmfxp)
. o
where is the plan—form aresa and x5 1s the distance to its centroid
"from the bow.
With the indicated changes equations (11) to (14) become, respec—
tively (with o in radians), '
q dx c
Sp Ap 2
Cg, = 2(:) @ + ey, —A-> o (12e)
Ao = O C = <§9>;2+ ne <A—P> o’ (132)
D Da=0 A de \'a
and
vol — S4,(1= A XX
Cy =2 [ 13 xm)} a + ncy <-£> ( P) a2 (1sa)
_ AX C\A X

To determine the force and moment characteristics it 1s necessary to
evaluate the coefficients 7 and cq,. In the appendix, available data

and some discussion of the coefficients are given.

Comparison of Theory and Eﬁperiment

Tests were recently completed at the Ames Aeronauticeal ILaboratory
of the high—fineness—ratio body shown in figure 7. The tests were con—
ducted in the subsonic speed range in the 12-foot pressure tunnel (refer—
ence 9), and in the supersonic speed range in the 6~ by 6—foot wind tunnel
(es yet unreported). The test results afforded a good opportunity to
compare the theory of this report with experiment.

In none of the tests did the cross Mach number (given by equation
(8)) exceed 0.3 so that, as may be seen from the appendix, no sensible
compressibility effect exists, while the cross Reynolds number remained
in the range for which c3, 1is comstant and equal to 1.2. The coeffi—

cient 1 was assumed to be dictated by the actual fineness ratio

S
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for which

n = 0.68

With these values and the geometric parameters obtained from the
shape equation (see fig. 7) the equations for 1lift coefficient, drag—
coefficient increment, and moment coefficient may be determined from
squations (12a) to (lka) as (with o in degrees)

cp = & =0.019 a + 0.0025 a?
L= 9 5
D-D,-
ACp = —°A‘—-° = 0.00017 a? + 0.000043 o®
q
Oy = —= = 0.018 o + 0.00035 a2
Al

wherse A and ! are the maximum cross—séctional ares and the actual
body length, respectively, and the pitching moment is about a point

x, = 0.704 1

which is the point about which the moments were consldered in the experi-
mental investigation of reference 9. The calculated characteristice of
1ift, drag increment, and pitching moment are compared with the experi-
mental velues in figure 8. It is seen that the theory of this report
well predicts the 1ift and drag variation with angle of attack. The
magnitude of the experimental values of the pitching moment are lower,
however, than the theory of this report would predict.

DISCUSSION AND CONCLUDING REMARKS

It is evident from equations (12a) and (1lka) that the variation of
lift and pitching moment of a bady of revolution with angle of attack
must, in the general case, be nonlinear since the potential cross forces
due to the change of momentum of the fluld varies as the first power in
d while the viscous cross force varies as the second power of the angle
of attack. This is a particularly important aspect in the design of mis—
siles since the guldance and control problem will be affected if nonlinear.
characteristics exigt. It is of interest to note from equation (lka) that
the pitching-moment variation about the center of gravity for constant
cross—force drag coefficient will be linear if the center of gravity is
located at the centroild of the plan~form area. - _ ;
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From the theory of this report, it appears possible to make the
pitching-moment variation about the center of gravity of the body zero in
one speclal case. This is the case of the body for which

that is, a conical body

if the center of gravity is at the centroid of the cross.area.

Several other important expectations may be implied from the theory
of this report: First, since the croes Reynolds number, which determines
the cross drag coefficient, varies with angle of attack, it is possible
for the cross drag coefficient to rather abruptly change (when R varies
with angle from 2 X 105 to 5 X 10°) with angle of attack which might lead
to rather erratic variations of the forces and moments with angle of attack.
However, 1t is to be expected that the three—dimensional effects previously
mentioned will reduce the indicated abrupt bebavior. It is also to be
noted that wind—tunnel tests at lower scales would not necessarily show
these peculiarities. Second, for bodies moving at high speeds the cross
Mach number will increase from subsonlc to supersonic values as the angle
of attack is increased and the cross drag coefficient may vary 1In an
erratic manner. This varlation may agein lead to corresponding variation
in the forces and moment with angle of attack., Thus it is clear that
model tests of high-speed missiles should be performed over the whole
speed range expected for the configuration if the model tests are to be
indicative of the true behavior. However, the fact that cross Reynolds
number as indicated in the appendix is not important at Mach numbers above
0.5 indicates that wind—tunnel tests on small-scale models at high super—
sonic speeds should accurately predict the behavior of the full-scale
configurations at and above the angle of atiack for which the cross Mach
number exceeds 0.5.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.

APPENDIX

The section drag coefficients of circular cylinders have been deter—
mined for a wide range of Mach and Reynolds numbers by & number of experi—
menters. A falrly comprshensive discussion of the drag phenomens of cir—
cwlar cylinders is given in reference 10.
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In figure 9 is shown the drag coefficlent de as a function of
Mach number for circular cylinders of different sizes (corresponding to
different Reynolds numbers). These values were obtained by W. F. Lindsey
(reference 11), John Stack (reference 12), T. E. Stanton (reference 13),
and A. Busemann (reference 14), as well as from some unpublished tests
performed In the Ames 1— by 3—1/2—foot high-speed wind tunnel.® Tt will
be seen that Reynolds number appears of signifilcance only at low Mach
numbers, so that for values of cross Mach number higher than 0.5 the
curve of figure 9 may be expected to apply for all Reynolds numbers
higher than about 102. The variation of the drag coefficient Cdq with

Reynolds number 1s shown in figure 10 along with some of the high sub—

sonic drag characteristics shown in figure 9 and with the curves of ®. P.

Relf (reference 15) and C. Wieselsberger (reference 16). Between figures

9 and 10, the drag characteristice of circular cylinders as & function of
Reynolds and Mach number are fairly completely established.

The position 1s not-so fortunate with regard to 1, the ratio of the
drag coefficient of circular cylinder of finlite length to that of a cir--
cular cylinder of infinite length, in that this ratio, to the author's
knowledge, has only been determined at one Reynolds number (88,000) and
at a negligibly low Mach number (reference 10). These results are given:
in figure 11 and correspond to the Reynolds number range for which 1.2 is
the drag coefficient of the cylinder of infinite length.

To obtain a rough estimate of the value of 17 at other Reynolds and
Mach numbers, the following conjecture is given. The end-relieving effect
for a cylinder of finite length must be primarily conveyed to other sec—
tions through the low—velocity regions in the wake. Evidently the ratilo

of the spanwise length of the wake to the wake thickness would be the ratio = ~

which should determine 7. The spanwise length of the wake will be approxi—
mately the length of the cylinder, while the wake thickness will be nearly
proportional to the product of the cylinder diameter and the drag coeffi-—
cient. It appears, then, that the value of 1y at Reynolds and Mach numbers
for which cgq, is not 1.2 would be the value of 7 (from fig. 11) for an
effective cylinder length~to-dlameter ratio equal to the product of the
actual length-to-diameter ratio and the ratio of the drag coefficient 1.2

to the section drag coefficient at the Beynolds and Mach number in the case
considered.

®The 1~ by 3-1/2-foot tunnel values (mainly useful in defining the trend
at high subsonic values) were obtained using a rake of unshielded total-—
head tube and indicated drag coefficients about 15 percent higher than
thoge obtained by others. It is believed that this effect was due to
excesslve angularity of the flow at the rake which would indicate incor—
rectly high values. The values have been proportlonately reduced to
agree with Lindsey's values and this proportionate reduction has been
applied at all other Mach numbers. '

it
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It should not be considered that, because the section drag coeffi-
cients have been given for supersonic Mach numbers, the equations devel—
oped in the report are applicable at supersonic cross Mach numbers. The
potential soclution of Munk is derived on the assumption of an incompress—
ible flow. This momentum solution, however, should be reasonably accurate
up to cross Mach numbers of the order of O.4. TLighthill (reference 17)
has treated the problem of the inviscid cross force on bodies for the case
in which the cross Mach number is not necessarily small. The solution
obtained 1s given in increasing powers of the angle of attack. Lighthill's
solution, although numerically complex, may serve to replace the inviscid
portions of the equations of this report.
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(b) Drag characteristics.
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